Ejercicios clase tema 2

Punto 2.1. Término general

1. Encuentra el término general de las siguientes sucesiones:

a)
$$a_n = \{1,3,5,7...\}$$

b) $b_n = \{1,-3,9,-27,81...\}$
c) $c_n = \{2,5,10,17...\}$
d) $d_n = \left\{1,\frac{1}{4},\frac{1}{9},\frac{1}{16},...\right\}$
e) $e_n = \left\{-\frac{1}{2},\frac{4}{3},-\frac{9}{4},\frac{16}{5},...\right\}$

Punto 2.2. Progresiones aritméticas

- 2. El día 1 de Enero de 2000 decido que cada día voy a ahorrar. Coloco una hucha con 100€, y desde entonces, ahorro 2€ cada día. Ahora, 10 años después, retiro los beneficios. ¿Cuánto tendrá?
- 3. Una nave espacial parte del km 6370 el día D a la hora H. Cada hora recorre 18000km. Escribe la sucesión aritmética que describe su viaje. Indica dónde se encontrará en 5 años. Busca si será capaz en 5 años de alcanzar Saturno.
- 4. En una realidad distinta, el ahorrador del ejercicio 1 tiene cantidades distintas y ahorra cantidades distintas. Sabiendo que el día 31 tenía 240€, y el día 101 450€, ¿con cuánto dinero empezó? ¿cuánto ahorra cada día?

Punto 2.3. Suma progresión aritmética

- 5. El primer día de mes pongo en una caja 0.5€. El segundo día 0.75€, el tercero 1€ y así sucesivamente. ¿Cuánto tendré a final de mes?
- 6. El último anfiteatro de un teatro tiene capacidad para 100 personas, el penúltimo para 90, el tercero para 80, etc. ¿Cuántos anfiteatros tiene el teatro? ¿Cuánta gente cabe?
- 7. Un deportista comienza su entreno con 10 minutos, e incrementa en 5 minutos diarios sus ejercicios. ¿Cuánto tiempo estará entrenando a final de mes? ¿Cuántos minutos acumulará el primer mes?

Punto 2.4. Sucesiones geométricas

- 8. En una sucesión geométrica el primer término es 3 y la razón es 5. Calcula el término séptimo.
- 9. En una sucesión geométrica el tercer término es 12 y el término sexto es 96. Determina el primer término y la razón.
- 10.Un ordenador pierde un 20% de su valor cada año desde que fue comprado. Sabiendo que costó 1000€, determina su precio 10 años después. ¿Cuánto tiempo ha pasado cuando su valor es de 10€?
- 11. El primer término de una sucesión geométrica es 5040. El segundo es 2520. Determina la razón de la sucesión, el término cuarto, y el término 50. ¿Notas algo en especial? ¿Puedes calcular el término 1000?
- 12. Cuando Fry es congelado en el año 2000 tiene 0.93\$ en el banco al 2.25% de interés (crece un 2.25% cada año). 1000 años después, acude al banco para pagar una multa con el dinero que tiene en la cuenta. ¿Cuánto tiene? (Futurama, capítulo 1x06: *a fishful of dollars*)

Punto 2.5. Suma de una progresión geométrica

- 13.De una progresión geométrica sabemos que el primer término vale 2 y el cuarto 54. Halla la razón y la suma de los primeros seis términos.
- 14. La razón de una progresión geométrica es 3 y el tercer término 45. Halla la suma de los primeros 7 términos.
- 15. Una sucesión geométrica tiene como primer término 100, y como razón 0.8. Calcula los primeros 4 términos. Calcula el término 100. Calcula la suma de los infinitos términos.
- 16.La razón de una progresión aritmética es ¾, y el segundo término vale 2. Halla la suma de los infinitos términos.

Punto 2.6. Límite de sucesiones

17. Escribe los términos que consideres necesarios en las siguientes sucesiones y determina si son convergentes o divergentes. En caso de ser convergentes, india su límite

a)
$$a_n = n^2$$
 b) $b_n = \frac{1}{n^2}$ c) $c_n = \frac{n}{n+3}$ d) $d_n = (-2)^n$ e) $e_n = \frac{n^2}{n+1}$ f) $f_n = \left(1 + \frac{1}{n}\right)^n$

Soluciones:

$(-1)^n \cdot \frac{n^2}{n+1}$	131.25	150 y 3	$\frac{1}{n^2}$	$4.19 \cdot 10^9$
46875	$(-3)^{n-1}$	134.2; 21.6	155; 2475	C; 1
C; 0	5465	16	D	$7.9 \cdot 10^8$; <i>No</i>
10; 550	3; 728	2n + 1	00; 80; 64; 51'2 2'5 · 10 ⁻⁸ ; 500	
D	D	1	$315; 8.9 \cdot 10^{-12}; 0$	
3; 2	7400	C; e	$n^2 + 1$	